First there was hydrogen.
نویسنده
چکیده
The history of hydrogen — the element that fills the world as we know it — consists of a most dramatic set of events. Hydrogen and helium atoms emerged a measly 379,000 years after the Big Bang. As the hot, dense plasma of protons, electrons and photons that was the universe began to cool and expand, electrons and protons gathered to form atoms. Four hundred million years later stars — such as our very own Sun — evolved from gravitationally collapsed clouds of hydrogen gas, providing the heat necessary to sustain life in an otherwise giant, freezing, cosmic abyss at 2.7 kelvin. The third colossal breakthrough in hydrogen history came some 4.4 billion years ago, when the temperature on Earth dropped below 100 °C and dihydrogen oxide began to condense at its surface, allowing the emergence of life in the new aqueous environment. Today hydrogen is estimated to account for 90% of all atoms in the universe, and it is essential to the material world. That includes ourselves: close to two-thirds of the atoms in our bodies are hydrogen. By no means an unproductive mass, the first element of the periodic table makes for an excellent chemical fuel — one that has been attracting increasing attention. The early Earth’s atmosphere was rich in hydrogen, and bacterial enzymes called hydrogenases evolved to generate energy from molecular H2 or H2O (ref. 1). Microorganisms proliferated under reducing conditions, and many of those have survived on hydrogen fuel to this day. Van Helmont was the first to find out that although hydrogen was combustible in air, it could not support combustion by itself. In 1671 Robert Boyle described the formation of gas bubbles from the reaction of iron filings with acid, but it was Cavendish who recognized H2 (which he referred to as ‘inflammable air’) as a substance distinct from other gases, which, when it was burnt in ‘dephlogisticated air’ (oxygen) produced water. This discovery inspired Lavoisier to call the substance ‘hydro-gen’, meaning water-former, in 1783. Conversely, in 1800 Nicholson and Carlisle (shortly followed by Ritter) managed to decompose water into its elemental constituents using electrolysis. It is this process that we try to achieve today, although with a much smaller electric bill, through a photochemical process2. The evolved H2 gas is an excellent, ultra-light energy carrier, and very promising as a fuel — abundant and environmentally friendly as its oxidation produces water. Indeed it was molecular H2 that filled the first hot air balloon in 1783 (pictured), and the fuel tanks of rockets two centuries later, permitting the inquisitive to explore further and further. For practical applications, however, it must be stored in either a compressed, liquefied or solid state3. In 1970 in the Philips Research laboratories it was accidentally discovered that hydrogen could be reversibly taken up by intermetallic compounds in the form of a hydride4. This led to spectacular success for electrochemical hydrogen storage, and the first mass-produced nickel–metal-hydride battery-powered vehicles hit the roads of Japan in 1997. Together with vigorous development of hydrogen–oxygen fuel cells and solid proton conductors5, these advances bring us closer to fulfilling Jules Verne’s dream that “hydrogen and oxygen ... will furnish an inexhaustible source of heat and light”, mentioned in The Mysterious Island as early as 1874. Because H and H2 constitute the prototypical atom and molecule, respectively, they have been extensively used by theoreticians for over a century — since the birth of quantum mechanics. These two species have served as test beds for rigorous critical evaluations of diverse quantum mechanical models and approximations6. The oxidation states of hydrogen span from −1 (hydride), through 0 (elemental), to +1 (proton), with very different physicochemical properties for each species. The H2 molecule — isoelectronic to the closed-shell He atom in the unified atom model — is quite inert. It was only in 1984 that Kubas described the coordination of molecular H2 to transition metals7. On the contrary, the H− anion is a very strong base and a strong reducing agent, whereas H+ is a voracious acid and a powerful oxidizer; non (or very slightly)-hydrated protons present in a superacidic environment readily convert alkanes into carbocations8. Indeed, hydrogen has been a key element in establishing quite reasonable theories of acidity and basicity, which came to be viewed as proton transfer reactions in the Brønsted-Lowry theory. The first element has never ceased to be of prime importance to many aspects of our world, and this is poised to continue with its major role in sustainable energy strategies. ❐
منابع مشابه
Adsorptive Removal of Al, Zn, Fe, Cr and Pb from Hydrogen Peroxide Solution by IR-120 Cation Exchange Resin
Adsorption of cations Al, Zn, Fe, Cr and Pb from aqueous solution of hydrogen peroxide using IR-120 cation-exchange resin was studied. The removal percentage of the cations was examined by varying experimental conditions (such as pH of the hydrogen peroxide solution, temperature, contact time and dosage of adsorbent) i...
متن کاملGasniGraphene-manganase oxide nanocomposite as a hydrogen peroxidase sensor
A feasible and fast method to fabricate hydrogen peroxide sensor was investigated by graphene-manganase nanocomposite carbone paste electrode. In the present work, in first step, the graphene was synthesized by chemical method and in second step, manganese oxide nanoparticle was doped on graphene. graphene-manganase nanocomposite was characterized by FTIR and SEM. The nanocomposite shows a high...
متن کاملComparison of doped combination zirconium-tungsten, zirconium- molybdenum and molybdenum-tungsten on single-wall vanadium oxide nanotube in hydrogen gas adsorption
In this study, doped vanadium oxide nanotubes were evaluated using different software to study the absorption of hydrogen gas. Vanadium oxide nanotubes are one of the options for absorption and storage hydrogen gas. In this research study for the first time, the Monte Carlo simulation was used to investigate the hydrogen gas absorption behavior in molybdenum-tungsten, molybdenum-zirconium and z...
متن کاملGasniGraphene-manganase oxide nanocomposite as a hydrogen peroxidase sensor
A feasible and fast method to fabricate hydrogen peroxide sensor was investigated by graphene-manganase nanocomposite carbone paste electrode. In the present work, in first step, the graphene was synthesized by chemical method and in second step, manganese oxide nanoparticle was doped on graphene. graphene-manganase nanocomposite was characterized by FTIR and SEM. The nanocomposite shows a high...
متن کاملThe Suicide Pandemic of Hydrogen Sulfide Poisoning in Japan
Background: Hydrogen sulfide (H2S) suicides have been frequent in Japan in recent years. This study was performed to describe the epidemiologic profile of an outbreak of H2S suicides in Japan. Methods: In September 2008, questionnaires about patients involved in H2S suicides were sent to 250 hospitals in Japan. Data collected from each patient included gender, age, clinical manifestations, date...
متن کاملThe Effect of Hydrogen Content and Welding Conditions on the Hydrogen Induced Cracking of the API X70 Steel Weld
In this study, first,diffusible hydrogen of cellulosic electrode E8010-P1 and low hydrogen electrode E8018-G was measured by mercury displacement method according to ISO3690. Then,the effect of preheating and post-heating on the sensitivity to hydrogen inducedcold cracking in welding of 18mm API5L X70 steel with these electrodes was investigated according to ISO17642-2. The results of visual in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature chemistry
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2015